
Deck Ext-Cmos Unlock 
 

What’s needed to know about UEFI for this 

 
• UI Element are organized in form, and each form is identified by a GUID 

Let’s See what we know 

 
 

We know that 

* Main, Advanced, Security, Power, Boot and Exit are the “shown” form, and PBS and CBS are the hidden 

form 

 

let’s get the GUID of these one 

 

Tool Needed: 

* UEFI Tool 

* Bios Image of the SD 

* ifrextractor-rs 

 

Let’s open the SD Bios Image in UEFI Tool and Search for AMD CBS 

 

the only match will be on CBSSetupDxe and make sense 

 

Right click on the PE32 Image and extract the Body 

do the same with PBS 



 

Now let’s find the other one… 

Let’s use for example the Advanced one 

 

Search for advanced: 

there will be more Result, but the only one that make sense, is the one in “SetupUtility”, as the other have 

little correlation to the things we are trying to do.. 

 

Extract also SetupUtility as Body.. 

 

* Drag every Extracted File on the ifrextractor.exe file (If you are using linux execute ./ifrextractor 

file_name) 

 

There will created a bunch of txt file that contain the description of the Menu: 

 

We are only interested in the GUID 

Take for Example CBS, we open it’s txt and we get 

 
 

So we can Annotate, and do for all 

AMD CBS : B04535E3-3004-4946-9EB7-149428983053 

AMD PBS : B863B959-0EC6-4033-99C1-8FD89F040222 

Power : A6712873-925F-46C6-90B4-A40F86A0917B 

Advanced : C6D4769E-7F48-4D2A-98E9-87ADCCF35CCC 

and so on 

 

we now have the GUID, and we have to find where is USED, and who if that guid is displayed 

 

let’s do a GUID search for CBS 

 

 

 

 



 

Only 3 Result Nice: 

• H2OFormBrowser 

• SetupUtilityApp 

• CBSSetupDXE, we can ignore this, of couse has a reference to it, we got the GUID from that module 

 

Let’s do for PBS 

Only 3 Result Nice: 

• H2OFormBrowserDxe 

• SetupUtilityApp 

• PBSSetupDXE, we can ignore this, of couse has a reference to it, we got the GUID from that module 

 

Ok, so our target is either H2OFormBrowser or SetupUtilityApp 

 

here I cheat, and for experience I know that the FormBrowser is the target to start with, if we are wrong we 

will try to analyze the SetupUtilityApp. 

Let’s extract as body H2OFormBrowserDxe and as starting point let’s open in a Hex editor to see if there’s 

any recognizable pattern. 

 

get the CBS GUID: 

B04535E3-3004-4946-9EB7-149428983053 

and convert to the little-Endian Form (use  for example https://robobunny.com/cgi-bin/guid) if you don’t 

want to do by hand 

 

we get  E33545B0043046499EB7149428983053, lets search for it in the hex editor 

 

 
 

Perfect one match, in what is seem random data… 

 

 

https://robobunny.com/cgi-bin/guid


Let’s do for PBS 

 

For power 

 
 

you can do for all the other .. 

 

interesting all the GUID that can be shown are all in the same place.. 

 

If we look carefull the pattern seem to be 

 

4 Byte + Guid, again 4 Byte + GUID etc… 

from these 4 byte the last 3 are always zero…. 

 

Let’s look at the power tab 

is 

01 00 00 00 POWER_GUID 

 

CBS is 

00 00 00 00 CBS_GUID 

 



Oh, then, we can safely guess that the first byte is “Enabled”/is shown bit. 

 

Now that we understood how the hide it, let’s see if exist a switch that flip that byte to 1.. 

 

Let’s get a Copy of Ghidra (For this not even any Plugin is required) : 

 

Import into Ghidra and do a standard auto analysis… 

 

We want to see if that bit is set from somewhere to 1 

 

so let’s search again for E33545B0043046499EB7149428983053, press S and  

input E3 35 45 B0 04 30 46 49 9E B7 14 94 28 98 30 53 

 

Oh, nice one match… 

 

 
 

Even more nice, is that Ghidra identified a Function that write to it.. 

 

right click to DAT_0002cec4, and do Reference -> Show Referce to Address 

 

double click on the Result and will jump to the address, ignore the Listing and focus on the decompiled 

code..: 

 



 

That sound promising 

let’s make a bit more readable with the info we discovered earlier.. 

In the data Type Manager right click on the File Name-> New Structure 

 

we know that we have 20 byte (4 byte +16 of GUID), the first is the enable bit, 3 padding and then the GUID 

 

and let’s call it FormShown.. 

 

will lock something like this 

 
 save and go back to the decompiled view, right click on 0002cec4, do Retype and assing the just created 

FormShown 

 

already start to look better 

 

  
 

Rename it to CBS, do the same for PBS and you end with 

 



 
 

we are almost there, we need to find when uVar5 is set to ‘w’ 

 

if you don’t like ascii you can right click and select hexadecimal 

 
 

 

the only thing left is understand what FUN_00029470() does 

 



 
 

 

Now I’m bored so let’s skip to the juicy part  

 

  out(0x72,0xf7); 

  bVar1 = in(0x73); 

and 

return uVar3 & 0xffffffffffffff00 | (ulonglong)bVar1; 

 

here you need a bit of knowledge of in and out instruction but a quick google search will point out at I/O 

port and you can see that is  

using the port 0x72/0x73 and all that this function do is read offset F7 of that io device… 

 

SD Unlocked 


